
1

Identification of Power Line Outages
Shay Maymon, and Yonina C. Eldar, Fellow, IEEE

Abstract—This paper considers the problem of power line
outages identification in its reformulation as a sparse recovery
problem. Using only hourly basecase topology information and
local (a.k.a internal) voltage phasor angle data available by
phasor measurements unit, we seek the subset of line out-
ages. We propose a least-squares formulation for solving the
identification problem whose computational complexity is often
reduced compared to existing approaches. A natural extension
of the least-squares method leads to a generalization of the line
outages identification problem in which the grid parameters
are unknown. An iterative solution is developed to solve for
the outaged lines in this general setting. Finally, we recognize
that for internal line outages, partial information that is often
assumed unknown can actually be computed from the data.
We incorporate this knowledge into our algorithm, resulting in
improved outages identification. Simulation results are provided
to support our methods and observations.

Index Terms—Power line outages, phasor measurement units,
sparsity, compressive sampling.

I. INTRODUCTION

A key aspect of situational awareness in the power grid is
the knowledge of transmission line, transformer, and generator
statuses. This is, in fact, the major component of the data
shared via the north-American electric reliability corporation
(NERC) system data exchange (SDX). Despite the clear need
for information sharing across the network for situational
awareness, there is limited real-time sharing of the legacy
supervisory control and data acquisition (SCADA) measure-
ments in the United States [1]. With the deployment of power
measurements units (PMUs) [2] in the north American power-
grid, significant efforts have been made to ensure that PMU
data per local system is shared among all interested parties
[3]. As opposed to SCADA measurements which provide
power-related information and are available every 4 seconds,
PMU also offers phase information and can provide 30-60
synchrophasors per second. Furthermore, using precise GPS
timing, synchrophasors are time-stamped at the universal time
coordinates, allowing data across large geographic areas to
be consistently aggregated. Extensive research in applying
PMU information to improve situational awareness has been
conducted since their introduction, including applications in
state estimation [4]–[6], dynamic security assessment [7]–[9],
and visualization [10]–[12].

It is well known that major blackouts have occurred due in
part to a lack of comprehensive situational awareness of the
power grid [13]. Due to the high interconnection of modern
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infrastructure systems, a change in conditions at any one
location may have immediate impact over a wide area. Further-
more, the effect of a local disturbance can be magnified as it
propagates through a network. Large-scale cascade failures can
occur almost instantaneously and with consequences in remote
regions. On the North American power grid, for example,
where transmission lines link all electricity generation and
distribution on the continent, wide-area outages in the late
1990s and summer of 2003 underscore the grid’s vulnerability
to cascading effects.

Since the SDX updates can be provided only on an hourly
basis [14], a method for timely identifying line outages
throughout an electric interconnection is critical for wide-area
monitoring in order to avoid failures from spreading quickly,
leading to a grid-wide blackout. Most existing approaches
for line outages identification use known system topology
information together with real-time phase angle measurements
that are typically obtained from PMUs, which can provide
unique insights into the global operation of the grid. Current
methods typically formulate the identification problem as a
combinatorial complex problem, which can be computation-
ally tractable only for single or, at most, double line outages
[15]–[17]. However, in the face of cascading failures in recent
blackouts, it is becoming increasingly crucial to cope with
multiple line outages. A recent approach that can deal with
multiple outages at affordable complexity adopts a Gauss-
Markov graphical model of the power network. This method
requires assumptions on the conditional independence among
bus phasor angle measurements as well as the availability of
real-time intersystem PMU data across the grid [18].

Zhu and Giannakis [19] have recognized the fact that the
outaged lines represent a small fraction of the total number
of lines and reformulated the problem of identifying line
outages as a sparse vector estimation problem. Leveraging
recent advances in compressive sampling [20]–[24], [28], they
proposed a computationally efficient algorithm for identifica-
tion of multiple line outages. Their approach uses only hourly
basecase topology information and local real-time voltage
phasor angle measurements obtained from PMUs.

This paper adopts the sparse linear model developed in
[19] in which only a subset of voltage phasor angle data that
corresponds to the subset NI of buses in the internal system is
observed. The subset NE of buses in the external system is not
observable. The sparse linear model relates the change in bus
voltage phases to the sparse vector that captures information of
line outages. Existing approaches for identifying line outages
extract the model equations associated with the observed bus
voltage phases while completely ignoring the model equations
of the unobserved data [15]–[17]. We propose instead a least-
squares approach in which both the unobserved phasor angle
data and the sparse coefficient vector are jointly estimated.
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It turns out that estimating the unobserved phasor angle data
using the least-squares approach and then substituting it back
into the objective function yields a sparse vector estimation
problem that is equivalent to the one we would have obtained
if we recovered the sparse vector based on the extracted
model equations associated with the observed data. Despite
the equivalence between the sparse vector estimation problem
obtained with the least-squares approach and the one resulted
from just ignoring the unobserved data [19], least-squares is
shown to be a more efficient approach for pre-processing the
data. Namely, the computational complexity of eliminating
the external phasor angle data by estimating it as a nuisance
parameter in the least-squares approach is often much lower
than that of extracting the model equations associated with the
observed data. Simulations show that as the size of the internal
network increases, the running time of our proposed algorithm
is becoming significantly better than competing approaches.

The least-squares formulation also allows us to generalize
the line-outages identification problem to the case in which
the grid parameters are not accurately known. To this end,
we develop an iterative solution based on the cyclic coor-
dinate descent approach for estimating the grid parameters,
the unobserved data, and the sparse vector. Simulations show
that when the model of the grid parameters is taken into
account in the estimation of the sparse vector, the percentage
of correctly identified line outages is improved compared to
the case in which the nominal values of the grid parameters
are used instead. For the cases tested, we observed relative
improvement in the range of 0.02% − 0.58%, where more
noticeable improvement occurs as the perturbations in the grid
parameters increase.

In solving the sparse vector estimation problem, both the
support of the sparse vector as well as the values of its
nonzero entries were assumed unknowns in [19]. We recognize
that when the power outage is internal, the value of the
corresponding entry in the sparse vector, often treated as
unknown, can actually be computed from the data. When the
outage is external we still treat the value of the corresponding
entry in the sparse vector as unknown. To this end, we extend
our sparse recovery algorithm to incorporate this information
on the sparse vector for improved line outages identification.
Two cases were simulated to test the impact of incorporating
partial information of this form on the percentage of correctly
identifying line outages. One in which all bus phasor angle
measurements are available and another in which the identifi-
cation is based only on a subset of phasor angle measurements.
In both cases and for all levels of perturbation noise tested,
better performance is achieved when incorporating the partial
information in the estimation. For the first case we observed
relative improvement of correct identification in the range of
1.77%− 3.13% and for the second case relative improvement
of 0− 20.06%.

The paper is organized as follows: Modeling of the power
transmission network is given in Section II. Section III formu-
lates the line outages identification problem. In Section IV the
least-squares approach for estimating the unobserved phasor
angle data is developed, the inverse approach is introduced,
and the relation of these methods is discussed. Section V

generalizes the line outages identification problem to the case
of unknown grid parameters. Section VI discusses sparse
reconstruction when some of the power outages are internal.
Finally, simulations are given in Section VII.

Notation: upper (lower) boldface letters will be used for
matrices (column vectors); ()T denotes transposition, I is the
identity matrix, || · ||p is the vector p-norm for p ≥ 1, || · ||0
is the l0 seminorm, which is equal to the vector’s number of
nonzero entries, and ||x||2W = xTWx. The Moonre-Penrose
pseudo-inverse of A is denoted by A†, and an orthogonal
projection onto R(A) is denoted by P⊥A .

II. POWER TRANSMISSION NETWORK MODELING

Consider a power transmission network consisting of N
buses (a.k.a nodes) denoted by the set N = {1, 2, . . . , N},
and L transmission lines (a.k.a branches) that are represented
by the set of edges E = {(m,n)} ⊆ N × N . A node can
represent a generator or a load substation, whereas a line can
stand for a transmission or distribution line. Power systems
can be thought of as electric circuits of even continent-wide
dimensions. Using Kirchoff’s current law, the node currents
i ∈ CN×1 are shown to be related to the node voltages
v ∈ CN×1 through the following multivariate Ohm’s law:

i = Yv. (1)

Here Y ∈ CN×N is referred to as the bus-admittance matrix
and is given by

[Y]mn =


∑
l∈Nm yml + ymm, m = n
−ymn, n ∈ Nm

0, o.w.,
(2)

whereNm is the set of neighboring buses linked to m. The line
series admittance ymn = 1/zmn = gmn + jbmn, whose real
and imaginary parts are called conductance and susceptance, is
often used in place of the impedance zmn. The bus-admittance
matrix Y is symmetric and more importantly sparse since
its (m,n)-th off-diagonal entry is zero unless nodes m and
n are directly connected. It is usually written in rectangular
coordinates as Y = GY + jBY .

Power flow models are useful for determining how injected
power flows along all transmission lines. Let Sm = Pm +
jQm be the complex power injected at bus m whose real
part Pm and its imaginary part Qm are referred to as the
active and reactive powers, respectively. Representing Sm =
VmI∗m where Vm (Im) denotes the complex voltage (current)
at bus m, the multivariate Ohm’s law in (1) together with the
representation of the complex nodal voltages in polar form,
i.e., Vm = Vme

jθm , yields

Pm =

N∑
n=1

VmVn ([GY ]mn cos(θm − θn) + [BY ]mn sin(θm − θn))

(3a)

Qm =

N∑
n=1

VmVn ([GY ]mn sin(θm − θn)− [BY ]mn cos(θm − θn)) .

(3b)

Since Pm and Qm depend on phase differences, power
injections are invariant to phase shifts of bus voltages. This
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explains why a selected bus called reference is conventionally
assumed to have zero voltage phase without loss of generality.
Assuming Y is known, the standard power flow problem
consists of fixing the pairs {Pm, Vm} or the pairs {Pm, Qm}
and solving the nonlinear equations in (3) for the remaining
unknowns.

The linear DC power flow model [25], [26], whose im-
portance is mostly due to its use in grid monitoring and
optimization, provides a linear approximation of the power
control flow model (3). This approximation is based on the
following assumptions:
I. The power network is purely inductive; Resistances can
be ignored and the conductance part GY of Y can be
approximated by zero, i.e., Y = jBY .
II. The voltage phase differences across directly connected
buses are small; θm − θn ≈ 0 for every pair of neighboring
buses (m,n).
III. The magnitude of nodal voltages is approximated by one
per unit.
Under these assumptions, the model in (3) reduces to

Pm = −
∑
n 6=m

bmn(θm − θn) (4a)

Qm = −bmm −
∑
n 6=m

bmn(Vm − Vn), (4b)

where bmn is the susceptance of the (m,n)-th branch. Note
that active powers depend on voltage phases, whereas reactive
powers are solely expressible via voltage magnitudes.

Consider now the active subproblem in (4):

Pm = −
∑
n 6=m

bmn(θm − θn)

= θm

−∑
n6=m

bmn

+
∑
n 6=m

θnbmn, (5)

or in vector-matrix form

p = Bθ. (6)

Here θ ∈ RN represents the voltage phasor angles of all buses
in the network and p ∈ RN represents the corresponding
injected power variables. The matrix B is referred to as the
weighted Laplacian matrix and is uniquely determined by the
line susceptance parameters {bmn} and the topology-bearing
information E provided by the SDX, i.e.,

[B]mn =


−
∑
k∈Nm bmk, m = n
bmn, n ∈ Nm

0, o.w..
(7)

In vector-matrix form

B = MDMT = −
L∑
l=1

blmlm
T
l , (8)

where the matrix M, formed by columns {ml}Ll=1, is referred
to as the bus-line incidence matrix and is determined by the
network topology. When l corresponds to the line connecting
nodes m and n, the column vector ml has all its entries
zero except the mth and nth, which take on the values 1 and

−1, respectively. The diagonal matrix D has its lth diagonal
entry equal to −bl, where here and after we abuse notation
and simply denote by bl the susceptance bmn of the line l
connecting nodes m and n. Similarly, the vector-matrix form
of the reactive sub-problem in (4) is

q = −β + Bv, (9)

where q ∈ RN represents the reactive power variables, and
β ∈ RN whose m-th entry is equal to bmm. The next section
mathematically formulates the problem of identifying line
outages in the power network where it uses the linear DC
power flow for solving it.

III. LINE OUTAGE IDENTIFICATION

Suppose that due to a failure in the grid, several outages
occur and yield the post-event network (N , E ′). Since the
weighted Laplacian matrix B is determined by the line sus-
ceptance parameters and the topology-bearing information,
changes in the topology of the network due to line outages
can be identified based on changes in B. Clearly, if the k-th
line is in outage, the post-event susceptance bk′ = 0 and the
post-event weighted Laplacian matrix B

′
becomes

B
′

= −
L∑

l=1,l 6=k

blmlm
T
l . (10)

Thus, using pre- and post-event phasor angle data provided by
PMUs together with the pre-event network-wide topology B,
line outages can be identified using the linear DC approxima-
tion of the active power (6).

We partition the network buses into two disjoint subsets:
the subset NI of buses in the internal system, which are
observable, and the subset NE of buses in the external system,
which are unobservable. Similarly, we partition the pre- and
post-event phasor angle data θ and θ′ and the weighted
Laplacian matrix B as

θ =

[
θI
θE

]
, θ′ =

[
θI
′

θE
′

]
(11a)

B =
[

BI BE

]
, (11b)

where the subscripts I and E are associated with the subsets
NI and NE , correspondingly. Let us also denote by EI the
set of edges representing lines connecting internal nodes and
by EE = E\EI the set representing the remaining lines in
the network. Given the pre- and post-event internal phasor
angle data θI and θ

′

I , as well as the pre-event network-wide
topology B, various approaches based on the DC model (4)
are proposed in [15]–[17], [19] for unveiling the subset of line
outages, denoted by Ẽ ⊂ E .

The power variables p′ of the quasi-stable post-event net-
work can be expressed in terms of the pre-event power
variables p as

p′ = p + η. (12)

Here, the noise vector η accounts for the small perturbations
due to e.g., variations in bus loads, which are usually modeled
as a zero-mean vector, possibly Gaussian, with covariance
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matrix σ2
ηI [27]. Using the linear DC approximation for the

active power (6) in (12) yields

B′θ′ = Bθ + η. (13)

Then, introducing the difference B̃ = B − B′ denoting the
weighted Laplacian matrix for the outage lines in Ẽ and
representing B′ in terms of B̃, the model in (13) becomes

B(θ′ − θ) = B̃θ′ + η. (14)

Denoting the change in bus voltage phases by θ̃ = θ′ − θ and
using

B̃ =
∑
l∈E

(−bl)mlm
T
l −

∑
l∈E′

(−b′l)mlm
T
l

= −
∑
l∈Ẽ

blmlm
T
l , (15)

which follows from (8), we obtain

Bθ̃ = −
∑
l∈Ẽ

bl(mlm
T
l )θ

′
+ η

=
∑
l∈Ẽ

(
−blmT

l θ
′
)
·ml + η

=
∑
l∈Ẽ

sl ·ml + η (16)

where the notation sl = −blmT
l θ
′

is introduced for simplicity.
Identifying line outages using (16) amounts to unveiling the

subset Ẽ given the internal phase difference vector θ̃I = θI
′−

θI and the pre-event network topology B. Existing approaches
extract θ̃I , exhaustively check the least-squares error for each
possible topology Ẽ and select the one that gives the minimum.
Such an approach incurs combinatorial complexity since the
number of possible topologies grows combinatorially with the
number of line outages. These methods are thus limited to
identifying single or at most double line outages [15]–[17].

Recognizing that the number of line outages is a small
fraction of the total number of lines, line-outage identification
can be formulated as sparse vector estimation [19], i.e.,

Bθ̃ = Ms + η, (17)

where s[l] = sl = −blmT
l θ
′

for l ∈ Ẽ and zero otherwise.
The sparse representation in (17) relates the vector θ̃ to the
sparse vector s, whose support represents the subset of lines
in outage, and as such, recovering it translates to identifying
line outages. This sparse representation allows us to rely on
the machinery of sparse recovery which can often solve such
problems using polynomial time algorithms [24], [28].

Partitioning θ̃ and B as in (11), it then follows from (17)
that

BI θ̃I + BE θ̃E = Ms + η. (18)

Note that in addition to the unknown sparse vector s, the vector
θ̃E is also not available since external nodes are assumed
unobservable. Although it is not of immediate interest it must
be accounted for in the analysis. The next section addresses
the problem of estimating the sparse vector s based on the
model in (18) where it introduces two approaches for treating

the unobserved phasor angle data θ̃E .

IV. SPARSE RECONSTRUCTION

Given the model in (18), where only a subset θ̃I of voltage
phasor angle data is available, we next discuss two methods
for recovering the sparse vector s: the least-squares approach
and the method taken in the literature (e.g. [19]) which will
be referred to here as the inverse approach.

A. Least-squares approach

In this approach, we propose to treat the unobservable
phasor angle data θ̃E as a nuisance parameter and jointly
estimate it together with the desired sparse vector s using a
least-squares formulation. Specifically, solving the following
optimization for both θ̃E and the sparse vector s:

min
s,θ̃E

||BI θ̃I + BE θ̃E −Ms||22, s.t. ||s||0 ≤ κ (19)

where κ represents the sparsity level, i.e., the number of
nonzero entries in s. In the general case, optimizing (19) with
respect to θ̃E will result in more than one solution. Any two
solutions will differ by a vector in the null-space of BE . When
BE has full-column rank, a unique solution exists. Otherwise,
a minimum norm solution of the least-squares problem is
unique and is given by

ˆ̃
θE = −B†E(BI θ̃I −Ms), (20)

where B†E is the Moore-Penrose pseudo-inverse of BE .
Specifically, writing BE in its SVD form

BE = U

[
Σ
0

]
VT , (21)

where U and V are unitary matrices and Σ is a diagonal
matrix with nonnegative entries, the Moore-Penrose pseudo
inverse of BE is given by

B†E = V[Σ† 0]UT . (22)

Substituting (20) into (19), the optimization reduces to

min
s
||P⊥BE⊥(BI θ̃I −Ms)||2, ||s||0 ≤ κ (23)

where

P⊥BE⊥ = I−BEB†E . (24)

The operator P⊥
BE⊥

is an orthogonal projection onto the
left null space of BE , namely N (BT

E), which is the subspace
orthogonal to the range space of BE . Denoting by QI the
orthonormal eigenvectors in U that correspond to unit eigen-
values in the eigen decomposition of P⊥

BE⊥
, it follows that

P⊥BE⊥ = QIQ
T
I . (25)

Using the eigen-decomposition of P⊥
BE⊥

(25) in (23) and
noting that QI consists of orthonormal columns, the optimiza-
tion reduces to

min
s
||QT

I (BI θ̃I −Ms)||22, ||s||0 ≤ κ. (26)
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Denoting yQ = QT
I BI θ̃I and AQ = QT

I M, the optimiza-
tion is further reduced to

min
s
||yQ −AQs||22, ||s||0 ≤ κ. (27)

Note that the formulation of (27) only requires an orthonormal
basis QI for the null space N (BT

E). Knowing yQ and AQ, ef-
ficient recovery of s can then be obtained using approaches for
reconstructing sparse coefficient vectors in a linear regression
model [24], [28].

An alternative way to obtain the optimization in (27) is
by applying the projection operator P⊥

BE⊥
directly on (18).

Noting that BE θ̃E lies in R(BE), it is omitted when projected
onto N (BT

E), and the model is reduced to

P⊥BE⊥BI θ̃I = P⊥BE⊥Ms + P⊥BE⊥η. (28)

Using (25) and the fact that the matrix QI is of full-column
rank, the model in (28) is equivalent to

yQ = AQs + QT
I η, (29)

where the random vector QT
I η has zero mean and covariance

σ2
ηI. Finally, solving for the sparse s that minimizes the least

squares error in (29) yields (27).

B. The inverse approach

Let us now introduce what we refer to as the inverse
approach, which is taken in [15]–[17], [19] to cope with
the fact that only a subset of voltage phasor angle data is
observable. In this approach, it is assumed that the matrix B
is invertible, and the model in (17) is multiplied from the left
with B−1 to obtain[

θ̃I
θ̃E

]
= B−1Ms + B−1η. (30)

Then, the subset of equations corresponding to the observed
bus voltage phases is extracted as

θ̃I = [B−1]IMs + [B−1]Iη. (31)

Next, the compact singular value decomposition (SVD) of
[B−1]I = UIΣIV

T
I is introduced in (31) to account for the

colored perturbation introduced by the inverse, i.e.,

θ̃I = UIΣIV
T
I Ms + UIΣIV

T
I η. (32)

Finally, multiplying (32) from the left by Σ−1
I UT

I and defining
yV = Σ−1

I UT
I θ̃I and AV = VT

I M, the following sparse
linear regression model is obtained in [19]:

yV = AV s + VT
I η. (33)

The noise term VT
I η is a zero-mean random vector with

covariance σ2
ηI. The vector s is then selected as the solution

to
min

s
||yV −AV s||22, ||s||0 ≤ κ. (34)

C. Discussion

Let us consider the case in which B is invertible and
compare the two approaches. This setting corresponds to the
power network being fully connected [29].

Theorem: I. The optimization of (27) based on the least-
squares approach is equivalent to the optimization of (34)
based on the inverse approach, i.e., the same estimate is
obtained with both approaches for the sparse vector s, whose
support represents the subset of lines in outage.
II. The sparse linear models introduced in (29) and in
(33) are linearly related through the unitary transformation
T = VT

I QI . Specifically, multiplying (29) by the unitary
transformation T yields (33):

yQ = AQs + QT
I η

T→ yV = AV s + VT
I η. (35)

The two models are identical iff the orthonormal bases satisfy
QI = VI .

Part I of the theorem is a direct consequence of part II
since the least-squares objective is invariant under unitary
transformations. To prove the second part of the theorem, we
introduce the following lemma.
Lemma: Assuming B is invertible, the square matrix QT

I BI

is invertible and its inverse is given by

(QT
I BI)

−1 = [B−1]IQI . (36)

Partition the matrices B and B−1 as in the following identity
corresponding to internal and external measurements

B−1B =

[ [
B−1

]
I[

B−1
]
E

]
·
[

BI BE

]
= I. (37)

It then follows that [
B−1

]
I
BI = I (38a)[

B−1
]
I
BE = 0. (38b)

Specifically, [B−1]I is a left inverse of BI , and the rows of
[B−1]I span the left null-space of BE (i.e., N (BT

E)), which is
orthogonal to the range space of BE (i.e., R(BE)). We then
conclude from (38a) that the matrix PBI = BI [B

−1]I is an
oblique projection onto the column space of BI whose null-
space is BE . Similarly, its transpose PBI

T = P[B−1]I
T =

[B−1]I
T
BT
I is an oblique projection onto the row space of

[B−1]I .

Multiplying QT
I BI by [B−1]IQI from the right, we obtain(

QT
I BI

) (
[B−1]IQI

)
= QT

I

(
BI [B

−1]I
)
QI

=
(
P[B−1]I

TQI

)T
QI

= QT
I QI (39)

where the last equality follows from the fact that QI is a
basis for the left null space of BE , which is spanned by the
rows of [B−1]I . Recalling that QI is an orthonormal basis, it
follows from (39) that the matrix [B−1]IQI is a right inverse
of QT

I BI .

To show that [B−1]IQI is also a left inverse of QT
I BI and

thus (QT
I BI)

−1 = [B−1]IQI , we use the fact that P⊥
BE⊥

=

QIQ
T
I is an orthogonal projection onto the left null space of



6

BE and the identity in (38a), i.e.,(
[B−1]IQI

) (
QT
I BI

)
= [B−1]I

(
QIQ

T
I

)
BI (40)

=
(

[B−1]IP
⊥
BE⊥

)
BI

=
(
P⊥BE⊥ [B−1]I

T
)T

BI

= [B−1]IBI = I,

completing the proof of the lemma. �

To prove the theorem, we show that applying the invertible
linear transformation Σ−1

I UT
I (QT

I BI)
−1 on (29) yields the

model in (33). Specifically,

Σ−1
I UT

I θ̃I =

Σ−1
I UT

I (QT
I BI)

−1QT
I Ms + Σ−1

I UT
I (QT

I BI)
−1QT

I η
(1)
=

Σ−1
I UT

I

(
[B−1]IQIQ

T
I

)
Ms + Σ−1

I UT
I

(
[B−1]IQIQ

T
I

)
η

(2)
=

Σ−1
I UT

I [B−1]IMs + Σ−1
I UT

I [B−1]Iη
(3)
=

Σ−1
I UT

I UIΣIV
T
I Ms + Σ−1

I UT
I UIΣIV

T
I η

(4)
=

VT
I Ms + VT

I η, (41)

where (36) is used in (1), (2) follows by noting that P⊥
BE⊥

=

QIQ
T
I is an orthogonal projection onto N (BT

E), the SVD
decomposition of [B−1]I is used in (3), and (4) follows since
UI is unitary.

Using (36) and the SVD decomposition of [B−1]I , it follows
that

Σ−1
I UT

I (QT
I BI)

−1 =

Σ−1
I UT

I [B−1]IQI =

Σ−1
I UT

I UIΣIV
T
I QI =

VT
I QI , T. (42)

Noting that both P⊥
BE⊥

= QIQ
T
I and P⊥

[B−1]I
T = VIV

T
I are

orthogonal projections onto the same subspace, N (BT
E), and

that the orthogonal projection is unique, we obtain

QIQ
T
I = P⊥BE⊥ = P⊥

[B−1]I
T = VIV

T
I , (43)

from which it follows that T is unitary.
Since the models are linearly related through the unitary

transformation T = VT
I QI , i.e., applying T on (29) results

in (33), the models are identical when

VT
I QI = I. (44)

Rearranging and multiplying both sides by VI from the left,
we obtain

0 = VI

(
VT
I QI − I

)
=
(
VIV

T
I

)
QI −VI

(1)
=
(
QIQ

T
I

)
QI −VI

= QI

(
QT
I QI

)
−VI

(2)
= QI −VI (45)

where (1) follows from (43), and (2) follows since the
columns of QI are orthonormal. Since VI has full-column

rank, it follows from (45) that VT
I QI = I iff QI = VI , i.e.,

the two models are identical if and only if QI = VI . �
We proved that under both approaches we will obtain the

same estimate for the sparse vector s, whose support represents
the subset of lines in outage. The computational complexity,
though, is not the same for both methods. In [19], the matrix
B is first inverted, its NI rows are then extracted and [B−1]I
is finally decomposed into its compact SVD form. In contrast,
the approach we propose requires only finding an orthonormal
basis for the left null space of BE . The latter can be obtained
using a QR decomposition. Specifically, decomposing BE

into the product of an orthonormal matrix Q with an upper
triangular matrix R, the first r columns of Q where r is
the rank of BE form an orthonormal set of basis vectors for
R(BE) and the remaining columns of Q form an orthonormal
basis for N (BT

E). Furthermore, since B is a sparse matrix, it
follows that the matrix BE which is a sub matrix of B is also
sparse. This fact can be exploited in efficiently factorizing the
matrix BE into its QR form. In the inverse approach, the
sparsity of B can be exploited when inverting it. The inverted
matrix though is, in general, dense, and thus sparsity cannot be
exploited in its SVD decomposition. A step-by-step summary
of each of the approaches is given in Table I.

TABLE I
THE LEAST-SQUARES APPROACH VS. THE INVERSE APPROACH

Least-squares Inverse
B = −

∑L
l=1 blmlm

T
l B = −

∑L
l=1 blmlm

T
l

B−1 = inv(B)

B = [BIBE ] - sparse B−1 =

[ [
B−1

]
I[

B−1
]
E

]
- dense

QI - Orthonormal basis for N (BT
E) [B−1]I = UIΣIV

T
I

AQ = QT
I M AV = VT

I M

yQ = QT
I BI θ̃I yV = Σ−1

I UT
I θ̃I

mins|||s||0≤κ ||yQ −AQs||22 mins|||s||0≤κ ||yV −AV s||22

V. UNCERTAINTY IN GRID PARAMETERS

Section III considers the problem of line outages identifi-
cation where it assumes that the grid parameters, namely the
susceptances {bl} of all branches are known. The least-squares
formulation we proposed allows us to generalize the problem
to the case in which the exact value of these parameters is not
known, but rather prior information is available in the form:

b = b0 + ξ. (46)

Here, the vector b0 is deterministic whose values are known
and may be based on estimates from past observations, and
ξ is an error vector with zero mean and known positive-
definite covariance matrix Λξ. The prior information on b
can be incorporated into the least-squares optimization as a
regularization term in the following form:

min
s,θ̃E ,b

1

σ2
η

||BI θ̃I + BE θ̃E −Ms||2 + ||b− b0||2Λ−1
ξ

, (47)

s.t. ||s||0 ≤ κ
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where ||b−b0||2Λ−1
ξ

= (b−b0)TΛ−1
ξ (b−b0) represents the

weighted norm of b− b0 with weighting matrix Λ−1
ξ and

B = [BI BE ] =

L∑
l=1

−blmlm
T
l . (48)

The coupling between the unknowns b and θ̃E in (47)
makes it difficult to find an exact solution for the optimization.
However, noting that when fixing b (θ̃E) the objective is a
quadratic function of θ̃E (b), we propose an approximate iter-
ative solution based on a cyclic coordinate descent approach.
The latter is an optimization algorithm for finding a local
minimum of a function. In its simplest case, one cyclically
iterates through the directions, one at a time, minimizing the
objective function with respect to each coordinate direction
at a time. For the optimization of (47), we first assume that
b is fixed and jointly optimize over s and θ̃E . Then, we
assume that both s and θ̃E are fixed and optimize over b.
Since the regularization term is independent of s and θ̃E ,
the optimization of (47) with respect to these parameters is
equivalent to the following optimization:

min
s,θ̃E

1

σ2
η

||BI θ̃I + BE θ̃E −Ms||2 (49)

which yields the same equations as obtained in (20) and (26),
i.e.,

θ̃E = BE
†(Ms−BI θ̃I), (50a)

min
s
||QT

I (BI θ̃I −Ms)||22, ||s||0 ≤ κ. (50b)

Introducing the matrix C whose l-th column is given by
cl = mlm

T
l θ̃ and noting that Bθ̃ = −Cb, the objective

function in (47), viewed as a function of b, can be reduced to

J(b) =
1

σ2
η

||Cb + Ms||2 + ||b− b0||2Λ−1
ξ

. (51)

This equation is equivalent to

J(b) = ||Cb0 + Ms||2
(σ2
ηI+CΛξCT)

−1+ (52)

||(Λξ
−1 + (CTC)/σ2

η)1/2b−
(Λξ

−1 + (CTC)/σ2
η)−1/2(Λξ

−1b0 −CTMs/σ2
η)||2.

It is straightforward to see that J(b) in (52) is minimized for

bopt = (Λ−1
ξ + (CTC)/σ2

η)−1(Λξ
−1b0 −CTMs/σ2

η)

= b0 − (σ2
ηΛ−1

ξ + (CTC))−1CT (Cb0 + Ms), (53)

where

J(bopt) = ||Cb0 + Ms||2
(σ2
ηI+CΛξCT)

−1 . (54)

Note that the matrix (Λ−1
ξ + (CTC)/σ2

η) is obtained by
summing a positive-definite matrix with a positive-semidefinite
matrix so it is invertible. The same applies for the matrix(
σ2
ηI + CΛξC

T
)
.

We now summarize the procedure proposed for recovering
the sparse vector s given internal node measurements and
partial information on the grid parameters.

Algorithm 1: Recovering s with Unknown Grid Param-
eters

1 Initialization: b = b0, θ̃I = θ′I − θI , M - the bus-line
incidence matrix formed by columns {ml}Ll=1

2 Compute B = −
∑L
l=1 blmlm

T
l and extract BI and BE

from it as in (11)
3 Recovering s: Compute an orthonormal set of basis

vectors QI for the null-space N (BT
E), optimize

mins ||QT
I (BI θ̃I −Ms)||2, ||s||0 ≤ κ

4 Estimate θ̃E according to θ̃E = BE
†(Ms−BI θ̃I)

5 Estimate b: Compute the matrix C whose l-th column is
given by cl = mlm

T
l θ̃,

bopt = b0 − (σ2
ηΛ−1

ξ + (CTC))−1CT (Cb0 + Ms)

6 Continue iterating steps (2)-(5) until convergence.

Note that at each iteration of the algorithm the objective
function is decreased.

Simulations show that incorporating the model of the
grid parameters into the optimization framework results in
an improved percentage of correctly identified line outages.
Specifically, we observed relative improvement of up to 1.67%
with more significant improvement in the percentage of correct
identification for larger perturbations in the grid parameters.

VI. EXPLOITING ADDITIONAL INFORMATION FOR SPARSE
RECONSTRUCTION

In the approaches discussed in Section IV for reconstructing
the sparse coefficient vector s, both the support of s as well
as the values of its nonzero entries were assumed unknowns.
Note, however, that nonzero entries of s that correspond to
lines connecting internal nodes can actually be computed from
the measurement data.

Recall the definition of s:

s[l] =

{
sl = −blmT

l θ
′
, l ∈ Ẽ

0, o.w.
(55)

or, alternatively,

s[l] =

{
−bmn(θ

′

m − θ
′

n), l ∈ Ẽ
0, o.w.

, (56)

where in (56) we used the fact that when l corresponds to the
line connecting nodes m and n, the column vector ml has
all its entries zero except the mth and nth, which take on the
values 1 and −1, respectively. Thus, when both nodes m and
n are internal, the post-event bus voltage phases θ

′

m and θ
′

n are
available, and the value of s[l] is either −bmn(θ

′

m−θ
′

n) or zero,
depending whether the line l is in outage or not. When either
node is external the value of s[l] is still treated as unknown
in the case where the line l is outaged.

Recall that EI represents the set of edges connecting internal
nodes and EE represents the set of remaining edges. Let
us rewrite the sparse linear model from (29) in a simpler
notation where yQ, AQ and QIη are replaced by y, A and
η respectively, i.e.,

y = As + η. (57)
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Then each of the entries of s in (57) whose index belongs to
EI can take only one of two known values, as indicated in
(56). As we next show, this observation can be exploited to
improve the performance of recovering s.

We next consider OMP [22], which is a popular approach
for reconstructing sparse vectors in linear regression models.
OMP relies on greedy approximation schemes and is mostly
popular for its computational simplicity and guaranteed perfor-
mance. It iteratively updates the support of the sparse subset
by finding the column most correlated to the signal residual.
Following an introduction of this approach, we discuss its
adaptation to the case in which partial information on the
sparse vector is given.

A. Overview of OMP

OMP first initializes both the subset Lk of indices corre-
sponding to nonzero entries in ŝk and the approximation error
vector rk = y −Aŝk:

L0 = ∅ (58a)

r0 = y. (58b)

Then, the column al of A whose correlation with the approxi-
mation error vector is largest is selected, and its index is added
to the subset Lk, i.e.,

lk = arg max
l

∣∣aHl rk−1
∣∣2

||al||2
(59a)

Lk = Lk−1 ∪ lk. (59b)

Finally, a least-squares fitting of y using all columns in Lk is
obtained to form the estimate

ŝk = arg min
s[l]|l∈Lk

||y −As||2, (60)

whose error vector rk = y−Aŝk is orthogonal to the subset
Lk of columns of A. Note that in (60) each entry s[l] such
that l /∈ Lk is set to zero.

B. OMP extension for partial information on the sparse vector

We now suggest an adaptation of OMP in which partial
information on the sparse vector s, in the form discussed
earlier, is utilized. We first examine a simple scenario in which
the support of the sparse vector is one. The least-squares
optimization of the model in (57) for this scenario is given
by

min
s
||y −As||22 = min

i

{
||y − siai||22 i ∈ EI

mins[i] ||y − s[i]ai||22 i ∈ EE

= min
i

{
||y||22 − 2sia

T
i y + s2

i ||ai||22 i ∈ EI
mins[i](||y||22 − 2s[i]aTi y + s[i]2||ai||22) i ∈ EE

= min
i

{
||y||22 − 2sia

T
i y + s2

i ||ai||22 i ∈ EI
||y||22 − (aTi y)2/||ai||22 i ∈ EE

(61)

which results in

î = arg max
i

{[
2sia

T
i y − s2

i ||ai||22
]
i∈EI

,
[
(aTi y)2/||ai||22

]
i∈EE

}

and

ŝ[̂i] =

{
sî î ∈ EI

aT
î

y

||aî||2
î ∈ EE

.

We next generalize the algorithm to the case in which the
support of the sparse vector is greater than one. Since each
entry of the sought sparse vector that is associated with index
in EI can take either zero or another known value, the index
selection step in (59a) is changed to reflect this. Similarly, in
the least-squares fit of (60) the minimum should be taken over
only the unknown entries of the sparse vector. Following is a
summary of the algorithm.

Algorithm 2: Incorporating Partial Information on the
Sparse Vector Using OMP

1 Initialization: L0 = ∅, r0 = y,
B = [BIBE ] = −

∑L
l=1 blmlm

T
l ,

QI is an orthonormal basis for N (BT
E),

y = QT
I BI θ̃I , A = [{al}l] = QT

I M
2 For k=1:κ

3 lk = arg maxl

{[
2sla

T
l rk−1 − s2

l ||al||22
]
l∈EI

,[
(aTl rk−1)2/||al||22

]
l∈EE

}
, where sl = −blmT

l θ
′

Lk = Lk−1 ∪ lk
4 ŝk =

arg mins[l] ||(y −
∑
l∈Lk∩EI slal)−

∑
l∈Lk∩EE s[l]al||

2.
5 rk = y −Aŝk

Simulation results show the benefit of exploiting the addi-
tional information on the sparse vector in the case of internal
line outages for reconstructing it. As we see in Section
VII, better performance is achieved when this information is
utilized as compared to the standard OMP algorithm which
treats both values and support of the nonzero entries of the
sparse vector as unknowns. Moreover, the improvement of
correctly identifying line outages with our proposed approach
is much more noticeable in the case where only subset of the
outages are internal as compared to the case where the phasor
angle data of all nodes is observed.

VII. SIMULATIONS

In this section the IEEE 118-bus benchmark system [30] is
used to test the proposed algorithms for outages identification.
The software toolbox MATPOWER [31] is used throughout
to generate the phasor angle measurements and the pertinent
power flows. AC power flows are generated for both pre- and
post-event systems.

We consider first the 118-bus system with the complete in-
formation on phasor angles. All possible candidate topologies
with a single line outage are tested, excluding outaged lines
that result in islanding the post-event system. For each line-
outage topology tested, 100 realizations of the perturbation
noise η are generated. The variance of η is set either equal
to zero, or equal to 1%, 2%, or 5% of the average pre-event
power injection. The percentage of correctly identified line
outages is listed in Table II.
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TABLE II
118-BUS SYSTEM WITH ALL BUS PHASOR ANGLE

MEASUREMENTS - ALGORITHM 2

OMP OMP with partial information
0% 0.9497 0.9665 (+1.77%)
1% 0.9063 0.9215 (+1.68%)
2% 0.8808 0.9056 (+2.82%)
5% 0.8416 0.8679 (+3.13%)

Table II shows the benefit of incorporating partial informa-
tion on the sparse vector for reconstructing it. Note that since
the complete information on phasor angles is available, all
nodes are treated as internals and all entries of the sparse vec-
tor that correspond to outaged lines can be computed from the
post-event phasor angles. For all levels of perturbation noise
tested, Algorithm 2 is shown to achieve better performance
in identifying line outages than the standard OMP procedure,
in which both the support of the sparse vector as well as the
values of its nonzero entries are assumed unknowns.

We next consider line-outage identification relying on a
subset of phasor angles from the 118-bus system partitioned
as in [17]. Specifically, the internal system contains buses with
indexes in the set NI = {1− 45, 113, 114, 115, 117}, and the
external ones with those in NE = {46 − 112, 116, 118}. All
other settings are identical to those specified in the previous
case, where the complete information on phasor angles is
available. The results, which are listed in Table III, show
again the improved percentage of correctly identifying line
outages when partial information on the sparse vector is used
for reconstruction. The improvement is much more noticeable
than in the first case, where all nodes are internal, and is
increased as the perturbation noise level increases. In the
first case, the estimate is fairly well since it is based on the
complete information on phasor angles. Adding the partial
information on the sparse vector is thus less significant as
compared to the second case in which the estimate is based
on only a subset of phasor angles.

TABLE III
118-BUS SYSTEM WITH PHASOR ANGLE MEASUREMENTS

FROM NI - ALGORITHM 2

OMP OMP with partial information
0% 0.4637 0.4637
1% 0.3886 0.4394 (+13.07%)
2% 0.3727 0.4315 (+15.78%)
5% 0.3469 0.4165 (+20.06%)

We next consider identification of line outages when the grid
parameters are not accurately known and follow the model
in (46). The 118-bus system with the complete information
on phasor angles is considered. Again, all possible candidate
topologies with a single line outage are tested, excluding
outaged lines that result in islanding the post-event system.
For each line-outage topology tested, 1000 realizations of the
perturbation noise η and the error vector ξ are generated.

The error vector ξ is assumed to have uncorrelated entries
and its covariance matrix is expressed by Λξ = σ2

ξI. We
compare the results of Algorithm 1 after a few iterations
with those obtained after one iteration where the values of
the grid parameters are set to their nominal values. The
percentage of correctly identified line outages is listed in Table
IV. As expected, when the model of the grid parameters is
taken into account in the estimation of the sparse vector, the
percentage of correctly identified line outages is improved
compared to the base case in which the nominal values of the
grid parameters are used instead. The simulations also show
that for the same level of perturbation noise η, an increased
improvement in the percentage of correct identification occurs
for larger perturbations in the grid parameters.

TABLE IV
118-BUS SYSTEM WITH ALL BUS PHASOR ANGLE

MEASUREMENTS - ALGORITHM 1

Itr 1 itr 3 itr 5
ση = 1.2, ση/σξ = 0.3 0.5824 0.5895 0.5921 (1.67%)
ση = 1.2, ση/σξ = 0.4 0.8385 0.8455 0.8478 (1.11%)
ση = 1.2, ση/σξ = 0.6 0.9314 0.9316 0.9316 (0.02%)
ση = 0.6, ση/σξ = 0.1 0.1736 0.1743 0.1746 (0.58%)
ση = 0.6, ση/σξ = 0.3 0.9389 0.9400 0.9402 (0.14%)
ση = 0.6, ση/σξ = 0.4 0.9476 0.9483 0.9483 (0.07%)

Finally, we compare the computational complexity of the
least-squares and the inverse approaches for different partitions
of the 118-bus system into internal and external subsets. Both
algorithms are run using Matlab 2015a software, on a typical
computer with Intel Core i5-4300U CPU @ 1.90GHz. The
running times of both algorithms are listed on table V and
illustrated in Figure VII. As we can see, when the number
of observable nodes in the internal system is relatively small
compared to the total number of nodes in the network, the
running times of both algorithms is comparable, with a small
favor towards the inverse approach. However, as the size of the
internal network increases, the running time of our proposed
algorithm is becoming significantly better than that of the
inverse approach with a factor of up to 13.9 in the best case
we tested.

VIII. CONCLUSIONS

In this paper power line outages identification was re-
formulated as a least-squares optimization. As the size of
the internal network increases, the running time of our pro-
posed algorithm was shown to becoming significantly better
than other competing approaches for outages identification.
A natural extension of the least-squares method led to a
generalization of the identification problem in which the grid
parameters are unknown. Simulations show that when the
model of the grid parameters is taken into account in the
estimation of the sparse vector, the percentage of correctly
identified line outages is improved, where more noticeable
improvement occurs as the perturbations in the grid parameters
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TABLE V
118-BUS SYSTEM - RUNNING TIMES OF BOTH APPROACHES

Size of Internal system Inverse [ms] Least-squares [ms]
10 1.4 2.0
20 2.1 2.0
30 2.8 1.9
40 3.3 1.6
50 3.8 1.3
60 4.6 1.5
70 4.5 1.1
80 5.2 0.945
90 6.2 0.86

100 6.8 0.7
110 7.8 0.56

Fig. 1. 118-BUS SYSTEM - Running times of Least-squares approach vs.
Inverse approach
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increase. We finally showed that extending our sparse recovery
algorithm to incorporate partial information on the sparse
vector, which is often assumed unknown, results in improved
outages identification for both the case in which all bus phasor
angle measuremeants are available and the case in which
the identification is based only on a subset of phasor angle
measurements.
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